18,932 research outputs found

    Uprated OMS Engine Status-Sea Level Testing Results

    Get PDF
    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed

    Interaction of a Modulated Electron Beam with a Plasma

    Get PDF
    The results of a theoretical and experimental investigation of the high-frequency interaction of an electron beam with a plasma are reported. An electron beam, modulated at a microwave frequency, passes through a uniform region of a mercury arc discharge after which it is demodulated. Exponentially growing wave amplification along the electron beam was experimentally observed for the first time at a microwave frequency equal to the plasma frequency. Approximate theories of the effects of 1) plasma-electron collision frequencies, 2) plasma-electron thermal velocities and 3) finite beam diameter, are given. In a second experiment the interaction between a modulated electron beam and a slow electrostatic wave on a plasma column has been studied. A strong interaction occurs when the velocity of the electron beam is approximately equal to the velocity of the wave and the interaction is essentially the same as that which occurs in traveling-wave amplifiers, except that here the plasma colum replaces the usual helical slow-wave circuit. The theory predicting rates of growth is presented and compared with the experimental results

    Stochastic properties of systems controlled by autocatalytic reactions II

    Full text link
    We analyzed the stochastic behavior of systems controlled by autocatalytic reaction A+X -> X+X, X+X -> A+X, X -> B provided that the distribution of reacting particles in the system volume is uniform, i.e. the point model of reaction kinetics introduced in arXiv:cond-mat/0404402 can be applied. Assuming the number of substrate particles A to be kept constant by a suitable reservoir, we derived the forward Kolmogorov equation for the probability of finding n=0,1,... autocatalytic particles X in the system at a given time moment. We have shown that the stochastic model results in an equation for the mean value of autocatalytic particles X which differs strongly from the kinetic rate equation. It has been found that not only the law of the mass action is violated but also the bifurcation point is disappeared in the well-known diagram of X particle- vs. A particle-concentration. Therefore, speculations about the role of autocatalytic reactions in processes of the "natural selection" can be hardly supported.Comment: 17 pages, 6 figure

    Analytical model of brittle destruction based on hypothesis of scale similarity

    Full text link
    The size distribution of dust particles in nuclear fusion devices is close to the power function. A function of this kind can be the result of brittle destruction. From the similarity assumption it follows that the size distribution obeys the power law with the exponent between -4 and -1. The model of destruction has much in common with the fractal theory. The power exponent can be expressed in terms of the fractal dimension. Reasonable assumptions on the shape of fragments concretize the power exponent, and vice versa possible destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure

    Study of tooling concepts for manufacturing operations in space Final report

    Get PDF
    Mechanical linkage device for manufacturing operations with orbital workshop

    Quantum-secured imaging

    Get PDF
    We have built an imaging system that uses a photon's position or time-of-flight information to image an object, while using the photon's polarization for security. This ability allows us to obtain an image which is secure against an attack in which the object being imaged intercepts and resends the imaging photons with modified information. Popularly known as "jamming," this type of attack is commonly directed at active imaging systems such as radar. In order to jam our imaging system, the object must disturb the delicate quantum state of the imaging photons, thus introducing statistical errors that reveal its activity.Comment: 10 pages (double spaced), 5 figure

    Parametric down-conversion from a wave-equations approach: geometry and absolute brightness

    Full text link
    Using the approach of coupled wave equations, we consider spontaneous parametric down-conversion (SPDC) in the narrow-band regime and its relationship to classical nonlinear processes such as sum-frequency generation. We find simple expressions in terms of mode overlap integrals for the absolute pair production rate into single spatial modes, and simple relationships between the efficiencies of the classical and quantum processes. The results, obtained with Green function techniques, are not specific to any geometry or nonlinear crystal. The theory is applied to both degenerate and non-degenerate SPDC. We also find a time-domain expression for the correlation function between filtered signal and idler fields.Comment: 10 pages, no figure

    Cultural selection drives the evolution of human communication systems

    Get PDF
    Human communication systems evolve culturally, but the evolutionary mechanisms that drive this evolution are not well understood. Against a baseline that communication variants spread in a population following neutral evolutionary dynamics (also known as drift models), we tested the role of two cultural selection models: coordination- and content-biased. We constructed a parametrized mixed probabilistic model of the spread of communicative variants in four 8-person laboratory micro-societies engaged in a simple communication game. We found that selectionist models, working in combination, explain the majority of the empirical data. The best-fitting parameter setting includes an egocentric bias and a content bias, suggesting that participants retained their own previously used communicative variants unless they encountered a superior (content-biased) variant, in which case it was adopted. This novel pattern of results suggests that (i) a theory of the cultural evolution of human communication systems must integrate selectionist models and (ii) human communication systems are functionally adaptive complex systems

    Non-linear optics with two trapped atoms

    Get PDF
    We show theoretically that two atomic dipoles in a resonator constitute a non-linear medium, whose properties can be controlled through the relative position of the atoms inside the cavity and the detuning and intensity of the driving laser. We identify the parameter regime where the system operates as a parametric amplifier, based on the cascade emission of the collective dipole of the atoms, and determine the corresponding spectrum of squeezing of the field at the cavity output. This dynamics could be observed as a result of self-organization of laser-cooled atoms in resonators.Comment: 11 pages, 8 figure

    Coherent Backscattering of Light with Nonlinear Atomic Scatterers

    Full text link
    We study coherent backscattering of a monochromatic laser by a dilute gas of cold two-level atoms in the weakly nonlinear regime. The nonlinear response of the atoms results in a modification of both the average field propagation (nonlinear refractive index) and the scattering events. Using a perturbative approach, the nonlinear effects arise from inelastic two-photon scattering processes. We present a detailed diagrammatic derivation of the elastic and inelastic components of the backscattering signal both for scalar and vectorial photons. Especially, we show that the coherent backscattering phenomenon originates in some cases from the interference between three different scattering amplitudes. This is in marked contrast with the linear regime where it is due to the interference between two different scattering amplitudes. In particular we show that, if elastically scattered photons are filtered out from the photo-detection signal, the nonlinear backscattering enhancement factor exceeds the linear barrier two, consistently with a three-amplitude interference effect.Comment: 18 pages, 13 figures, submitted to Phys. Rev.
    corecore